Kesulitan Siswa SMA dalam Memahami Gerak Harmonis Sederhana

Yeyehn Dwi Sugara¹, Sutopo², Eny Latifah³
Program Studi Pendidikan Fisika Pascasarjana Universitas Negeri Malang
Jl Semarang 5 Malang¹
Jurusan Fisika Universitas Negeri Malang
Jl Semarang 5 Malang³
E-mail: sugarayeyehn@gmail.com

Kata kunci: Gerak harmonis sederhana, pemahaman konsep

METODE PENELITIAN

HASIL
Pemahaman Siswa tentang Bentuk Representasi Matematis Getaran Harmonis
Butir soal untuk menilai pemahaman siswa tentang bentuk umum representasi matematis getaran harmonis disajikan dalam Gambar 1. Distribusi jawaban siswa ditunjukkan pada Tabel 1. Jawaban yang tepat atas pertanyaan (Gambar 1) tersebut adalah D.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sebuah balok dikaikan pada ujung pegas ditarik ke posisi $x=0$. Setelah dilepas, balok bergerak harmonis sederhana. Jarak total yang ditempuh balok dalam satu getaran penuh adalah....

Gambar 1. Butir Soal untuk Menilai Pemahaman Siswa tentang Bentuk Representasi Matematis Getaran Harmonis

Tabel 1. Distribusi Jawaban Siswa terkait pertanyaan pada Gambar 1

<table>
<thead>
<tr>
<th>Pilihan</th>
<th>Jumlah Siswa (N)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>93,3</td>
</tr>
<tr>
<td>D*</td>
<td>2</td>
<td>6,7</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Berdasarkan data tersebut, sebanyak 2 siswa memilih jawaban benar dengan persentase 6,7%. Sebanyak 28 siswa atau 93,3% dari keseluruhan memilih jawaban C. Siswa yang memilih jawaban ini sebenarnya sudah paham tentang pengertian satu getaran namun siswa salah mengartikannya ke dalam bentuk matematis. Berdasarkan data yang diperoleh, siswa masih mengalami kesulitan dalam memahami bentuk umum dari representasi matematis getaran harmonis.

Membaca Grafik Hubungan antara Posisi terhadap Waktu
Butir soal kedua digunakan untuk mengetahui kemampuan siswa dalam membaca grafik posisi terhadap waktu pada getaran harmonis. Butir soal disajikan pada Gambar 2 dan Distribusi jawaban siswa ditunjukkan pada Tabel 2. Jawaban yang tepat pada soal ini adalah A.
Ilustrasi gerak harmonis sederhana ditunjukkan sebagai berikut.

Pernyataan yang benar, terkait kecepatan dan percepatan partikel di titik A pada grafik.
A. Kecepatan dan percepatan positif
B. Kecepatan dan percepatan negatif
C. Kecepatan positif dan percepatan nol
D. Kecepatan positif dan percepatan negatif
E. Kecepatan negatif dan percepatan positif

Gambar 2. Butir Soal untuk menilai Pemahaman Siswa dalam Membaca Grafik Posisi terhadap Waktu

Tabel 2. Distribusi Jawaban Siswa terkait pertanyaan pada Gambar 2

<table>
<thead>
<tr>
<th>Pilihan</th>
<th>Jumlah Siswa (N)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Berdasarkan data, sebanyak 3 siswa atau 10 % dari keseluruhan siswa menjawab dengan benar. Namun banyak siswa yang masih mengalami kesulitan dalam membaca grafik. Sebanyak 18 siswa menjawab B; Dalam menjawab pertanyaan, siswa tidak menggunakan ilmu fisikanya, mereka berpendapat bahwa ketika posisi partikel berada pada grafik negatif maka kecepatan bernilai negatif juga. Sebanyak 9 siswa menjawab D tanpa disertai alasan.

Pemahaman Siswa tentang Hubungan Amplitudo dan Energi Total

Butir soal untuk mengetahui pemahaman konsep siswa tentang energi total gerak harmonis sederhana ditunjukkan pada Gambar 3. Distribusi jawaban siswa ditunjukkan pada Tabel 3. Jawaban yang tepat pada soal ini adalah D.

Sebuah balok dikaitkan dengan pegas ditarik sehingga A kemudian di lepas sehingga memiliki energi total sebesar \(E \). Jika amplitudonya menjadi 2 kali lipat, maka besarnya energi total adalah...

A. \(\frac{1}{2} E \)
B. \(E \)
C. \(2E \)
D. \(4E \)

Gambar 3. Butir Soal untuk Menilai Pemahaman Konsep Siswa tentang Energi Total

Pemahaman Konsep Siswa tentang Periode Pegas

Butir soal yang ditunjukkan pada Gambar 4 digunakan untuk menilai pemahaman siswa tentang konsep periode pegas. Distribusi jawaban siswa, ditunjukkan pada Tabel 4.

Tabel 3. Distribusi Jawaban Siswa terkait Pertanyaan pada Gambar 3

<table>
<thead>
<tr>
<th>Pilihan</th>
<th>Jumlah Siswa (N)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>16,7</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>53,3</td>
</tr>
<tr>
<td>D*</td>
<td>7</td>
<td>23,3</td>
</tr>
<tr>
<td>kosong</td>
<td>2</td>
<td>6,7</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Gambar 4. Butir Soal untuk Menilai Pemahaman Konsep Siswa tentang Periode Pegas

Diketahui dua buah sistem pegas-massa A dan B identik. Sistem pegas-massa A disimpan sejauh 15 cm sedangkan sistem pegas-massa B disimpan sejauh 10 cm, seperti pada gambar.

Jika kedua pegas dilepas bersamaan, sistem pegas yang sampai di posisi setimbang lebih dulu adalah.....

- A. A
- B. B
- C. A dan B bersamaan
- D. Tidak ada informasi yang mendukung

Tabel 4. Distribusi Jawaban Siswa terkait Pertanyaan pada Gambar 4

<table>
<thead>
<tr>
<th>Pilihan</th>
<th>Jumlah Siswa (N)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>53,3</td>
</tr>
<tr>
<td>C*</td>
<td>5</td>
<td>16,7</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Miskonsepsi juga dapat terjadi karena pemahaman yang dimiliki siswa tidak terkonstruksi dengan baik. Siswa tidak berfikir untuk merubah atau memodifikasi pemahaman yang dimiliki dengan pengetahuan yang dipelajari secara koheren (Limon, 2001). Selain itu miskonsepsi juga terjadi karena siswa tidak menyadari bahwa konsep yang dimilikinya salah (Bell & Odom, 2012).

Pemahaman Konsep siswa Tentang Periode Ayunan Sederhana

Butir soal untuk mengetahui pemahaman konsep siswa tentang periode ayunan sederhana ditunjukkan pada Gambar 5. Distribusi jawaban siswa diberikan pada Tabel 5.

| Dua orang anak dengan massa berbeda, masing-masing bermain ayunan dengan panjang tali sama. Anak A memiliki massa 30 kg dan anak B memiliki massa 20 kg. Jika kedua anak menyempangkan ayunan dengan simpangan awal yang sama dan setiap melintasi titik asal mereka berhitung satu, dua tiga, dan seterusnya. Anak yang paling cepat sampai pada hitungan ke-10 adalah: |
|---|---|---|
| A. Anak A | B. Anak B | C. Kedua anak sampai di hitungan ke-10 pada waktu yang sama | D. Tidak cukup informasi untuk menjawab |

Gambar 5. Butir Soal untuk Menilai Pemahaman Konsep siswa Tentang Periode Ayunan Sederhana

<table>
<thead>
<tr>
<th>Pilihan</th>
<th>Jumlah Siswa (N)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>C*</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Berdasarkan data, sebanyak 3 siswa menjawab benar. Namun, rata-rata siswa berpendapat bahwa periode dari ayunan dipengaruhi oleh massa ayunan. Sebanyak 12 siswa menjawab A. Siswa yang menjawab pilihan ini beranggapan bahwa semakin besar massa
semakin besar periodenya. Sebanyak 15 menjawab B, siswa beranggapan bahwa massa sebuah bandul berpengaruh pada periode ayunan. Semakin ringan massa ayunan maka semakin besar periode dari ayunan sederhana.

PENUTUP
Berdasarkan hasil observasi dan pembahasan, dapat disimpulkan bahwa masih banyak siswa yang mengalami kesulitan dalam memahami konsep getaran harmonis. Siswa masih mengalami kesulitan dalam memahami bentuk umum dari representasi matematis getaran sederhana, membaca dan mendeskripsian grafik posisi terhadap waktu, menentukan faktor-faktor yang mempengaruhi energi total getaran harmonis, serta kesulitan dalam menentukan parameter yang mempengaruhi besarnya periode pegas dan periode ayunan.

Oleh sebab itu, diperlukan suatu pendekatan pembelajaran yang nantinya dapat mengatasi kesulitan siswa dan meningkatkan pemahaman konsep siswa. Pemahaman konsep siswa yang baik nantinya dapat dijadikan dasar untuk meningkatkan kemampuan lainnya, misalnya kemampuan pemecahan masalah.

UCAPAN TERIMA KASIH
Ucapan terima kasih penulis sampaikan kepada pihak SMA Negeri 6 Malang yang telah memberikan kesempatan dan kontribusi dalam melakukan observasi.

DAFTAR RUJUKAN
De Cock, Mieke. 2012. Representation use and strategy choice in physics problem solving. Physical Review Special Topics-Physics Education Research, 8, 020117